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We present a general approach to understanding the quantum phases and phase transitions of quantum
antiferromagnets in two spatial dimensions. We begin with the simplest spin-liquid state, the Z2 spin liquid,
whose elementary excitations are spinons and visons, carrying Z2 electric and magnetic charges, respectively.
Their dynamics is expressed in terms of a doubled U�1� Chern-Simons theory, which correctly captures the
“topological” order of the Z2 spin-liquid state. We show that the same theory also yields a description of the
variety of ordered phases obtained when one or more of the elementary excitations condense. Field theories for
the transitions and multicritical points between these phases are obtained. We survey experimental results on
antiferromagnets on the anisotropic triangular lattice, and make connections between their phase diagrams and
our results.
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I. INTRODUCTION

The study of exotic phases of quantum antiferromagnets
has received a great impetus by the experimental discovery
of a number of candidate S=1 /2 Mott insulators. The pri-
mary aim of our paper is to present an attempt to place the
experimentally discovered phases in a single global phase
diagram. Such a phase diagram exposes relations between
the excitations of the various phases, and leads to theories for
the possible quantum phase transitions between them.

As will become clear from our analysis, we can generate
distinct “global” phase diagrams for distinct lattice types and
exchange interactions in two spatial dimensions. We will
present a general method for analyzing these, but will focus
on a single lattice type, found in a number of experimental
systems: this is the distorted triangular lattice shown in Fig.
1. Thus we are interested in the S=1 /2 antiferromagnet, with
SU�2�-invariant Heisenberg exchange interactions J and J�
illustrated in Fig. 1, along with possibly additional longer-
range two-spin or multispin exchange interactions which
have the same symmetry as Fig. 1. A number of limiting
cases of this lattice have been examined earlier, and we will
connect with all of these results:

�i� for J��J the model becomes essentially equivalent to
the square lattice antiferromagnets considered in Refs. 1–3,
and our results agree with these earlier results in this regime;

�ii� for J�J� we have the quasi-one-dimensional antifer-
romagnets which have been studied in some detail by
Starykh and co-workers;4,5

�iii� for J�J� we have the triangular lattice antiferromag-
nets for which our results will connect with those of Refs.
6–9;

�iv� Weihong et al.10 performed a series-expansion study
for the entire range of J� /J, and obtained phases which will
also appear in our phase diagrams;

�v� there have been a number of numerical studies11–14 of
isotropic triangular lattice case, J�=J, but with an additional
four-spin ring exchange interaction, and our theory will pro-
vide candidate phase diagrams for this model; and

�vi� the nonmagnetic phases for J�=J have been modeled
by the quantum dimer model15 on the triangular lattice by

Moessner and Sondhi,16 and our theory will also find their
phases.

Experimental examples extend over the full range of pa-
rameters for the lattice in Fig. 1, and realize a variety of
phases:

�a� A remarkable series of experiments was carried out by
Kato and co-workers17–23 on the organic Mott insulators
X�Pd�dmit�2�2 �for a general review of the organic com-
pounds, see Ref. 24�. Each site of the lattice in Fig. 1 has a
pair of Pd�dmit�2 molecules carrying charge −e and spin S
=1 /2. X ranges over a variety of monovalent cations, and the
choice of different X’s allows experiments over a range of
values of J� /J. The resulting phase diagram22 has magnetic
order with decreasing critical temperatures from Tc�42 K
to Tc�15 K across the compounds X=Me4P, Me4As,
EtMe3As, Et2Me2P, Et2Me2As, and Me4Sb, as the value of
J� /J increases from J� /J�0.35 to J� /J�0.7. �There are un-
certainties in the overall scale of J� /J, and there are also
likely to be significant four-spin ring exchange terms.� The
magnetic order is likely of the two-sublattice Néel type,22

although there are no neutron-scattering observations con-
firming this. The compound with X=EtMe3Sb has J� /J
�0.85, has no observable Néel order,23 and has been sug-
gested to be near the quantum critical point22 at which the
Néel order vanishes. Finally, the compound20,21 with X
=EtMe3P has J� /J�1.05 and has a ground state with a spin
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FIG. 1. �Color online� Distorted triangular lattice with nearest-
neighbor Heisenberg exchanges J� �on all horizontal bonds� and J
�on all other bonds�, representing the geometry of systems exam-
ined in this paper.
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gap and spontaneous columnar valence-bond-solid �VBS� or-
der at low T. The VBS order vanishes at a phase transition
observed to be at 25 K, and the low-T spin gap is measured
to be �40 K �the exchange constant J�250 K�. Thus these
series of compounds appear to realize the Néel-VBS transi-
tion predicted in Ref. 1, and in this paper we will place this
transition in the context of global phase diagrams of models
on the lattice in Fig. 1. We also note that a Néel-VBS tran-
sition as a function of increasing J� /J has also been found in
the series-expansion study.10

�b� A separate set of experiments has been performed on
the organic Mott insulators �-�ET�2Z, which also realize the
S=1 /2 antiferromagnet on the lattice in Fig. 1. The com-
pound with Z=Cu�N�CN�2�Cl has J� /J�0.5, and has a
ground state with Néel order,25 as found in the Pd�dmit�2
series above for small J� /J. The organic insulator with Z
=Cu2�CN�3 has J� /J�1, and appears to have no antiferro-
magnetic or VBS ordering down to the lowest observed
temperatures.26–29 This is therefore a candidate for a spin-
liquid ground state, whose nature has been the subject of
recent work.13,30–32 The bosonic Z2 spin-liquid state proposed
for this compound in Ref. 32 will appear in our phase dia-
grams below, and indeed will be natural point of departure
for our entire analysis. We believe that the experimental ob-
servation, noted above, of the other phases in our phase dia-
gram can be regarded as a point of support for our perspec-
tive. We will briefly mention below how Z2 spin-liquid states
with fermionic spinons,30 and other related states, can appear
in our approach.

�c� The transition-metal insulator33,34 Cs2CuCl4 has S
=1 /2 Cu ions on the vertices of the triangular lattice in Fig.
1 with J�J� /3. The ground state has spiral antiferromag-
netic order, similar to that present in the perfect triangular
lattice �J=J��, and will appear in the phase diagrams below.
An approach starting from the quasi-one-dimensional limit
J�J� has been successfully used4,5 to describe the spiral
ground state, and also the inelastic-neutron-scattering spec-
trum at high energies.

As noted above, our point of departure is a Z2 spin-liquid
state. The earliest proposals of such liquids involved BCS-
type states of paired charge 0, S=1 /2 particles �“spinons”�
which were either bosons6 or fermions.35 Fluctuations about
this state are expressed in terms of a Z2 gauge theory, in
which the spinons carry a Z2 electric charge, and hence the
name of the spin liquid. A large number of other models of
Z2 spin liquids have appeared since then.16,36–41 We will find
it convenient to begin with Z2 spin liquid in which the el-
ementary spinons are bosons because it is connected natu-
rally to a variety of ordered states found experimentally
�which we have described above�. We will denote the
bosonic spinons by a complex field z�, where �= ↑ ,↓ is a
spin index.

Apart from the spinon, the other fundamental elementary
excitation of a Z2 spin liquid is a charge 0 particle carrying
Z2 magnetic flux. This particle was pointed out in Ref. 6, but
its particular importance to the physical properties of Z2 spin
liquids was emphasized by Senthil and Fisher,36 who called it
a “vison.” In all cases we shall consider that it is possible to
combine the real visons into complex scalar fields va, where
a=1, . . . ,Nv is an additional flavor index which depends

upon the nature of the underlying lattice. The visons are
bosons, but the spinons and visons have mutual semionic
statistics.36,42 Consequently, by forming bound states of the
bosonic spinons z� and the visons va, we obtain S=1 /2
spinons which are fermions.42 This bound state formation
offers a route to extending our analysis to the case of fermi-
onic spinons, but we shall not comment further on this in the
present paper.

Our starting point is an effective-field theory for the
spinons z� and the visons va which implements their mutual
semionic statistics. As discussed generally by Freedman et
al.39 and implemented more specifically in Z2 spin liquids
with fermionic spinons by Kou et al.,43 this mutual statistics
can be realized by a doubled U�1� Chern-Simons �CS�
theory. A similar formalism was also applied to the cuprates,
with mutual statistics between spin and charge degrees of
freedom.44 To this end, we introduce two U�1� gauge fields,
a� and b�, and will consider effective Lagrangians with the
following schematic structure in 2+1 space-time dimen-
sions:

L = �
�=1

2

����� − ia��z��2 + sz�z��2	

+ �
a=1

Nv

����� − ib��va�2 + sv�va�2	 +
ik

2�
���	a���b	 + ¯ ,

�1.1�

where � ,� ,	=x ,y ,
 are space-time indices, and sz and sv
are the primary couplings we will tune to obtain our global
phase diagrams. The integer k=2 implements the needed
semionic statistics. The ellipses represent additional terms in
the effective potential for the z� and va which are constrained
by the projective symmetry group �PSG�, i.e., the transfor-
mations of the spinons and visons under the symmetries of
the lattice spin Hamiltonian. We will discuss these terms
more carefully when we describe the different PSGs in the
body of the paper.

In passing, we note that supersymmetric versions of the
doubled Chern-Simons theory in Eq. �1.1� have recently
been the focus of intense interest in the string theory
literature.45–50 Their model of interest is47 a Chern-Simons
theory with a U�N��U�N� gauge group, with opposite signs
for the Chern-Simons term for the two U�N�’s, and with
matter fields which are bifundamentals in the U�N�’s. Equa-
tion �1.1� is also precisely of this form with N=1: we can
define c�=a�+b� and d�=a�−b�, and then the c� and d�

fields have diagonal Chern-Simons terms with opposite
signs, and the z� and va carry bifundamental charges. The
U�N��U�N� theories have been argued48,49 to be dual to M
theory on AdS4�S7 /Zk, which is reason for the interest. The
N=1 case with N=4 supersymmetry has been argued50 to be
exactly dual to a U�1� gauge theory without a Chern-Simons
terms �the latter theory was reviewed in Ref. 51�. The ana-
logs of such N=1 dualities for nonsupersymmetric theories
are well known in the condensed-matter literature, and we
will discuss examples in the present paper �see also Ref. 36�.

A natural question arises at this point: what are the con-
ditions under which it is permissible to implement a U�1� CS
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theory realization of the Z2 spin liquid, rather than directly in
terms of a Z2 gauge theory? When we are discussing the
topological properties of the ground state or single-
quasiparticle excitations, there does not appear to be any
obstacle to using a U�1� theory.43 However, the issue be-
comes more delicate when the excitations proliferate, and we
are considering quantum phase transitions out of the spin-
liquid state. This question is discussed further in Sec. VI,
where we will find examples of transitions at which our U�1�
CS description fails. However, we also find cases where it
does succeed, and these are the main focus of this paper. As
we will see in Sec. IV, for these successful cases, because of
the constraints of the lattice PSG, the lowest-order terms
which break either of the U�1� gauge invariances of Eq. �1.1�
are of eighth order, 
va

8 as in Eq. �4.2�. Their effects are
easily incorporated into our analysis as a soft symmetry
breaking. We mention that the connection between doubled
Z2 and U�1� CS theories was also discussed by Balents and
Fisher52 in a different context.

Crucial to our analysis will be exact results on the low-
energy spectrum of L on a L�L torus as a function of sz and
sv. For the case where both sv and sz are large and positive,
both the spinons and visons are gapped, and we realize a Z2
spin liquid. Here we can integrate out the z� and va, and are
left with a pure doubled CS gauge theory. This theory was
quantized exactly on a torus in Refs. 39 and 43. The key
variables in this quantization were the fluxes piercing the two
cycles Cx,y of the torus

Ai = �
Ci

a�dx�, Bi = �
Ci

b�dx�. �1.2�

Given that all the matter fields carry unit a� or b� charges,
the Ai and Bi should be regarded as periodic variables taking
values on a circle of circumference 2�. After accounting for
this periodicity, the solution of the ground state of the CS
theory was found to be fourfold degenerate. The degeneracy
appears exponentially fast as L→� provided the vison and
spinon gaps remain finite. This fourfold degeneracy is
viewed as an essential characterization of the Z2 spin
liquid.6,42

The other phases in our phase diagrams appear when we
allow one or both of sz and sv to vary to negative values.
Then we can have phase transitions to phases in which one
or both of the z� and va are “condensed.” However, the pre-
cise nature of the broken symmetry, if any, is not immedi-
ately obvious in such phases, given the presence of the two
gauge fields and their CS term. The purpose of this paper is
to describe these phases and the associated quantum critical
points. Here we note that the order parameter characterizing
these states can be gleaned by carefully examining the low-
energy states of L on a L�L torus. As an example, consider
the state where sz is large and negative, and so a saddle point
with z��0 is favored. By global SU�2� spin symmetry, there
are actually an infinite number of such saddle points along
the manifold �z↑�2+ �z↓�2=const, i.e., along S3, the surface of a
sphere in four dimensions. The low-energy theory on an L
�L torus can be expressed as a functional integral over S3,
along with an integral over the gauge fields. We will solve

this quantum theory exactly, and find an “Anderson tower of
states,”53 with a nondegenerate ground state, and an infinite
sequence of excited levels with energies 
1 /L2 above the
ground-state energy. The sequence of excited levels, and
their degeneracies, can be uniquely identified with the quan-
tum mechanics of a particle moving on S3 /Z2, with the co-
ordinates of the particle representing the average orientation
of the order parameter across the entire torus. In other words,
the primary effect of the gauge fluctuations is to reduce the
order parameter characterizing the broken symmetry from S3

to S3 /Z2. It was these same gauge fluctuations which were
responsible for the fourfold degeneracy in the Z2 spin liquid.
The S3 /Z2�SO�3� order parameter allows an immediate
identification of the sz large and negative state: this is the
spiral antiferromagnet, as found in Cs2CuCl4.

A related analysis for the other phases will be found in the
body of the paper, allowing us to construct our phase dia-
grams. Here we show in Fig. 2 the phase diagram found for
a case in which there is only one vison flavor, Nv=1, and for
a particular model of the spinons—we label this theory
model BIII. A mean-field phase diagram with the same
phases appeared already in Ref. 8. Here we shall show that
these phases follow from the very general considerations
outlined above, and also provide field theories for all the
transitions and the multicritical point M. It is encouraging
that all the phases with broken symmetry, which descend

Z2 spin liquid
Valence bond solid

(VBS)

Neel
antiferromagnet

Spiral
antiferromagnet

M

FIG. 2. �Color online� Global phase diagram for the case with
Nv=1 and a particular model of the spinons �model BIII�; a similar
phase diagram appeared in Ref. 8. The Néel antiferromagnet is
found in a many materials, and has ordering wave vector Q
=2��1,0�. The geometry of the VBS state coincides with that found
�Refs. 20 and 21� in EtMe3P�Pd�dmit�2�2. The spiral antiferromag-
net shown in the figure has an ordering wave vector Q=2��1
−� ,0� with �=1 /6, small, as expected for J�
J. The experimen-
tally realized spiral state in Cs2CuCl4 has J��J, and consequently
a larger value of ��1 /2. The Z2 spin liquid in this phase diagram is
similar to that proposed in Ref. 32 to explain observations �Refs.
26–29� in �-�ET�2Cu2�CN�3. The transitions have been discussed
previously: �i� the CP1 field theory for the Néel-VBS transition
�Ref. 3�, �ii� the O�4� field theory for the spiral-Z2 spin-liquid tran-
sition �Refs. 54–56�, �iii� the mean-field theory for the spiral-Néel
transition �Ref. 8�, and �iv� the O�2� field theory for the VBS-Z2

spin-liquid transition �Refs. 7 and 16�. All these field theories are
contained in our theory in Eq. �1.1�, which also describes the mul-
ticritical point M.
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from the Z2 spin liquid with Nv=1, correspond precisely to
those which have been experimentally observed so far.

In Sec. II we will describe the phase diagram of the theory
in Eq. �1.1� as an abstract field theory, without reference to
any underlying antiferromagnet. The specific spinon and vi-
son degrees of freedom of the lattice antiferromagnet, and
their possible PSGs, will be identified in Sec. III. The com-
bination of the results of Secs. II and III leads to a variety of
possible phase diagrams. These are described in Sec. IV, and
the quantum phase transitions are described in Sec. V. Sec-
tion VI will give another semiclassical perspective on our
results, which also identifies the limitations of the present
U�1� CS approach. The concluding Sec. VII will make some
further remarks on recent experiments.

II. PHASES OF THE DOUBLED CHERN-SIMONS
THEORY

This section will discuss the phase diagram of the doubled
CS theory, considered here as an abstract field theory. The
interpretation of the phases in terms of the underlying anti-
ferromagnet requires more specific knowledge of the PSGs
of the spinons and visons, and these will be considered in
Sec. III.

For the case where the spinons and visons are gapped, as
we have already noted, we obtain the Z2 spin liquid. The
fundamental property of this theory is the fourfold degen-
eracy on a L�L torus, and this appears as a property of the
pure doubled CS theory.39,43 We are now interested in mov-
ing into one of the phases where one or both of the spinons
and visons are condensed and understanding the nature of the
broken symmetry. As in the Z2 spin liquid, we will do this
here by examining the low-energy states of the theory on the
L�L torus. We will compute the spectrum of the tower of
states by Anderson53 with excitation energies 
1 /L2: the
spectrum of states will allow a unique identification of the
ground-state manifold �GSM� associated with the broken
global symmetry.

We will only consider here the case where there is a single
spinon species z and a single vison species v; the generali-
zation to the multiple species case is straightforward. For the
broken-symmetry phases, we need only consider the phases
of these complex fields, and so we will write z
ei�z and v

ei�v where the corresponding symmetries are broken.

As a warmup, consider first the case with a single broken-
U�1� symmetry, characterized by the U�1� order parameter
ei�, and no gauge fields. The low-energy theory of � fluctua-
tions is given by the action

S� =
 d2rd
�K1

2
��
��2 +

K2

2
��i��2� , �2.1�

on an L�L torus, with � and �+2� identified. The couplings
K1,2 are two stiffnesses characterizing the broken symmetry.
Because this is a Gaussian theory, we can make the mode
expansion

��x,y,
� = �0�
� +
2�mx

L
+

2�ny

L
+

1

L
�
k�0

ak�
�eik·r,

�2.2�

where n and m are fixed integers �the winding numbers�, �0
represents the uniform fluctuation of the order parameter, and
the ak are the “spin-wave” normal modes. Inserting this in
the action, we obtain

S� = 4�2�m2 + n2�

+
 d
�K1L2

2
��
�0�2 + �

k�0
�K1

2
��
ak�2 +

K2

2
k2ak

2�� .

�2.3�

From this it is clear that the low-lying states have m=n=0.
The ak harmonic oscillators have energy 
k
1 /L, while the
�0 mode has energy 
1 /L2. So for the lowest states, we put
all the ak oscillators in the ground state, and we obtain a
tower of states with energy

Ep = E0 +
p2

2K1L2 , �2.4�

where p is an integer, measuring the angular momentum of
the �0 mode.

It is now useful to note that the theory S� in Eq. �2.1� is
exactly dual to U�1� gauge theory with a Maxwell term, and
so the latter should have the same tower of low-energy
states. Let us demonstrate this explicitly. First, we decouple
the quadratic terms in Eq. �2.1� by an auxiliary current J�,

S� =
 d2rd
� J

2

2K1
+

Ji
2

2K2
+ iJ����� . �2.5�

Integrating over �, we obtain the constraint ��J�=0, which
we solve by expressing J� in terms of a “dual” gauge field
a�:

J� =
1

2�
���	��a	. �2.6�

The normalization of 1 / �2�� is chosen so that periodicity of
the flux variables Ai in Eq. �1.2� with period 2� is equivalent
to the periodicity in the angular variable �→�+2�. Now
inserting Eq. �2.6� into Eq. �2.5�, we obtain the U�1� gauge
theory dual to S�:

Sa =
 d2rd
� 1

8�2K2
��
ai�2 +

1

8�2K1
��xay − �yax�2� ,

�2.7�

where we have chosen the temporal gauge with a
=0. An
important consequence of the periodicity in Ai variables is
that the flux piercing the torus, �d2r��xay −�yax�, must be an
integer multiple of 2�. We can see this by moving the con-
tour Ci in Eq. �1.2� across the entire length of the torus: the
change in the line integral upon returning to the initial posi-
tion must be an integer multiple of 2�, and this change is
equal by the Stokes theorem to the flux piercing the torus.
Thus the Hilbert space of Sa breaks apart into distinct sectors
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with total flux 2�p, where p is an integer. Within each sector,
the ground state has zero photons �which are the dual of the
spin waves�, and has ��xay −�yax�= �2�p� /L2. So the lowest-
energy state in each sector is

Ep = E0 +
L2

8�2K1
�2�p

L2 �2

= E0 +
p2

2K1L2 , �2.8�

which is the same as the spectrum of S� in Eq. �2.4�. This
verifies the equivalence of Eqs. �2.1� and �2.7�.

With these preliminaries out of the way, let us return to
our doubled CS theory with one spinon and one vison. Con-
sider the phase where the spinon is condensed and the vison
is gapped, so sv�0 and sz�0. Here we can simply integrate
out the vison, and are left with the following low-energy
theory for �z and the U�1� gauge fields:

Sz =
 d2rd
�K1

2
��
�z − a
�2 +

K2

2
��i�z + ai�2

+
ik

2�
a����	��b	� . �2.9�

We can always choose the gauge �z=0 �and A
=0�. In this
gauge, the integral over a� is an ordinary Gaussian. Perform-
ing this integral, we obtain the action

Sz =
 d2rd
� k2

8�2K2
��
bi�2 +

k2

8�2K1
��xby − �ybx�2� .

�2.10�

Comparing this with the spectrum of Sa in Eq. �2.8�, we
obtain the low-lying states

Ep = E0 +
k2p2

2K1L2 . �2.11�

This shows that the theory Sz in Eq. �2.9� is equivalent to the
U�1� scalar theory in Eq. �2.1� but with the periodicity �
��+2� /k. In other words, the GSM of this phase has been
modified by the gauge fluctuations from S1 to S1 /Zk. Alter-
natively stated, the broken symmetry of the ground state is
associated with distinct values of the composite field zk.

It is useful to have another perspective on the above result
by an alternative analysis of the theory Sz in Eq. �2.9�. This
analysis begins by “undualizing” the gauge field b� into a
dual scalar �b. For this we introduce, as in Eq. �2.6�, the
current J�

b =���	��b	 / �2�� and impose the constraint ��J�
b

=0 by a Lagrange multiplier �b; this modifies Sz in Eq. �2.9�
to

Sz =
 d2rd
�K1

2
��
�z − a
�2 +

K2

2
��i�z + ai�2

+ iJ�
b �ka� − ���b� +

J�
b2

2K̃
� . �2.12�

The last term is a useful regularization, and the original

theory in Eq. �2.9� is obtained in the limit K̃→�. Now we
perform the integral over J�

b and obtain the theory

Sz =
 d2rd
�K1

2
��
�z − a
�2 +

K2

2
��i�z + ai�2

+
K̃

2
�ka� − ���b�2� . �2.13�

In the limit K̃→�, we see that we must have a�

= �1 /k����b. However, �b is a variable periodic under �b
→�b+2�, and hence the periodic flux variables Ai in Eq.
�1.2� can only take the values

Ai =
2�pi

k
, �2.14�

where the pi are integers. In other words, U�1� gauge field a�

has been reduced to a Zk gauge field. Thus eik�
zk is gauge
invariant, and this explains our results above on the distinct
values of zk identifying distinct ground states.

We have now completed our discussion of the state where
the spinon is condensed and the vison is gapped �sv�0 and
sz�0�. Clearly, the complementary phase where the vison is
condensed and the spinon is gapped �sv�0 and sz�0� is
amenable to a parallel treatment, with complementary results
and a vk order parameter.

Finally, let us consider the case where both the visons and
spinons are condensed, sv�0 and sz�0. In this case, we can
see in the gauges �z=0 and �v=0 that both fields a� and b�

are fully gapped. So there is a unique ground state, and no
other excited states whose energy vanishes as L→�.

We can now generalize these results to the cases with
multiple flavors of visons and spinons, and the results are
summarized in Fig. 3 for k=2. The flavor indices simply tag
along for the order parameters involving a k-fold composites
of spinons or visons, which are invariant under the Zk gauge
transformations. However, there are now also additional
gauge-neutral order parameters possible, such as z�

�z�, which
were absent for the single-flavor case, because they were not
associated with any broken symmetry. Armed with the re-
sults in Fig. 3 and with knowledge of the microscopic PSGs
of the spinons and visons �which are described next in Sec.
III�, we can easily deduce the physical characteristics of the
phases of a variety of antiferromagnets.

III. SPINONS AND VISONS

A rich variety of spinon and vison operators can be de-
fined for S=1 /2 antiferromagnets on the lattice in Fig. 1, and

Z2 spin liquid

M

FIG. 3. Schematic phase diagram of the doubled CS theory in
Eq. �1.1� for k=2. All nonzero order parameters which characterize
the broken symmetry in each phase are shown.
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we shall not attempt any complete classification. Clearly, the
choice depends sensitively on the details of the microscopic
Hamiltonian. However, in previous semiclassical analyses, a
few natural choices have emerged for different limiting val-
ues of J� /J. We will describe these below and show how
they can fit together in a doubled CS theory such as Eq.
�1.1�.

The essential characteristics of the spinons and visons will
be their transformations under the symmetry operations of
the underlying spin model. These symmetries are the lattice
translations T1 and T2, the lattice reflections Px and Py, and
time reversal T:

T1: �x,y� → �x + 1,y� ,

T2: �x,y� → �x + 1/2,y + �3/2� ,

Px: �x,y� → �− x,y� ,

Py: �x,y� → �x,− y� ,

T: t → − t . �3.1�

Spin rotation is also a symmetry and is easily implemented
by contracting the spinor indices. Sections III A and III B
will consider the PSGs of spinons and visons in turn.

A. Spinons

One natural model of spinons appears upon describing the
spiral ground state of the triangular lattice antiferromagnet in
terms of Schwinger bosons. So we write the spin operator on

the lattice sites as S� =b†�� b /2, where �� are the Pauli matrices.
For the Schwinger bosons we make the following low-
energy expansion57 in terms of the spinon fields z�:

b� 
 z� exp�iQ · r/2� + i���z�
� exp�− iQ · r/2� . �3.2�

From this parametrization we can then deduce the following
expression for the spin operators:

S� = n�1 cos�Q · r� + n�2 sin�Q · r� ,

n�1 = Re�zt�y�� z�, n�2 = Im�zt�y�� z� ,

n�3 = n�1 � n�2 = z†�� z . �3.3�

We observe that Q is the ordering wave vector of the spiral.
So for J��J, we expect Q��2� /3,0�. For Cs2CuCl4, which
has J��3J, we have Q��� ,0�. Finally, in the square lattice
limit, J��J, we have Q��2� ,0�. Thus we expect Q to in-
crease monotonically from �� ,0� to �2� ,0� with decreasing
J� /J. Also note that n�1,2,3 are three mutually orthogonal vec-
tors.

The parametrization in Eq. �3.3� allows us to deduce the
PSG of the z�. These z� spinons will couple minimally to the
a� gauge field, and so there is a natural implied PSG for the
a�. We call the resulting PSG of spinons as model A,

Spinons, model A:

T1: z → eiQx/2z, a� → a�,

T2: z → eiQx/4z, a� → a�,

Px: z� → ���z�
� , ax → ax, ay → − ay, at → − at,

Py: z → z, ax → ax, ay → − ay, at → at,

T: z → iz�, a� → a�. �3.4�

We note that under this model A PSG, n�1,2 are odd under
time reversal, while n�3 is even. From this, and the represen-
tation in Eq. �3.3�, we deduce that n�3 is a spin nematic order
parameter.

The model A spinons are natural for J��J, where the
spiral order is likely to be present. However as we approach
the square lattice limit with J�→0, there is a finite range of
small J�
J over which we expect that Q is pinned exactly at
�2� ,0�, and we have the conventional two-sublattice Néel
order appropriate for the square lattice. In this case
sin�Q ·r�=0 identically, and cos�Q ·r�=cos�2�x�= �−1�2x. In
this limit, we can define another model of spinons which
appeared in previous theories of square lattice
antiferromagnets.1,2 We map z�→ �z�+ i���z�

�� /�2 and then
find that Eq. �3.3� is replaced by

S� = m� 1�− 1�2x, m� 1 = z†�� z , �3.5�

A significant difference from Eq. �3.3� is that now the U�1�
gauge invariance associated with a� is explicit, because rep-
resentation �3.5� is invariant under the gauge transformation
z�→z�ei�. We label these spinons model B, and they also
have mappings under the square lattice space group, which
we can deduce from Eq. �3.5� to be

Spinons, model B:

T1: z → − z, a� → a�,

T2: z� → − ���z�
� , a� → − a�,

Px: z → iz, ax → − ax, ay → ay, at → at,

Py: z → z, ax → ax, ay → − ay, at → at,

T: z� → ���z�, a� → − a�. �3.6�

It is now clear that under the model B PSG, m� 1 is odd under
time reversal. In the state where the spinons are condensed
and the visons are gapped, we see from Fig. 3 that we also
have two additional vectors in spin space which characterize
the broken symmetry in the ground state �analogous to the
three vectors found in model A�:

m� 2 + im� 3 = zt�y�� z . �3.7�

These vectors do not appear in the present expression for the
spin operator in Eq. �3.5�, and so their physical interpretation
is not yet clear. Let us, therefore, compute the PSG of these
vectors,

Model B:

T1: m� 2,3 → m� 2,3,

T2: m� 2 → m� 2, m� 3 → − m� 3,
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Px: m� 2,3 → − m� 2,3,

Py: m� 2,3 → m� 2,3,

T: m� 2 → m� 2, m� 3 → − m� 3. �3.8�

From these properties it is evident that we can identify m� 2 as
the central axis �in spin space� about which the spins are
precessing in the spiral antiferromagnet shown in Fig. 2. We
will present a more detailed analysis in Sec. IV D which
shows how the spiral state emerges for model B spinons.
This identification is also consistent with the analysis of this
phase in Ref. 8, where the spiral phase was induced by the
condensation of a charge 2 Higgs scalar—the vison is dual to
this scalar, and the gapping of the vison is equivalent to the
condensation of the Higgs scalar.

B. Visons

In the simplest models of visons,7,16,36 we take real par-
ticles hopping on the sites of the dual lattice, subject to a flux
of � around every site of the direct lattice. In other words,
the vison is the Ising field of an Ising model on the dual
lattice, with exchange couplings chosen so that every
plaquette surrounding a direct lattice site is frustrated. For
the antiferromagnet on the lattice in Fig. 1, the Ising model
resides on the dual lattice shown in Fig. 4. Because of the
dual relation between the couplings of the antiferromagnet
and the model of the visons, we expect that w� /w decreases
as J� /J increases.

It is a relatively straightforward matter to obtain the spec-
trum of such a particle moving on the lattice in Fig. 4. Be-
cause the kinetics of the vison is frustrated by the back-
ground spinon charge on every site, the product of the
hopping amplitudes on the six links around each hexagon is
−1. We are free to choose one of the links to be negative, and
our convention is shown in Fig. 4. The spectrum has multiple
minima in the Brillouin zone, and we introduce a real vison
field for each such minimum in the spectrum. This procedure
parallels that carried out in obtaining the multiple vortex
flavors in Refs. 58 and 59, but with modification that we are

considering real vison fields and not complex vortex fields.
For the general set of parameters for the lattice in Fig. 4,

we find that there are either four or two minima of the vison
dispersion lattice in the Brillouin zone. The four minima oc-
cur near J��J, and so are appropriate for the triangular lat-
tice limit; indeed for J�=J these minima coincide with those
found by Moessner and Sondhi.16 For J� /J small �w� /w
large�, near the square lattice limit, we find only two minima.

Let us begin by considering the four-minima case. These
are at momenta of the form

q1 = �q1x,�/2� ,

q2 = �� − q1x,�/2� ,

q3 = �− q1x,− �/2� ,

q4 = �q1x − �,− �/2� . �3.9�

There are two choices to combine these four real minima to
two complex minima, which will then correspond to the
complex vison fields va, with a=1,2. The first choice, which
we call model I, is

v1: q1 = �q1x,�/2� ,

v2: q2 = �� − q1x,�/2� ,

v1
�: q3 = �− q1x,− �/2� ,

v2
�: q4 = �q1x − �,− �/2� , �3.10�

while model II is

v1: q1 = �q1x,�/2� ,

v2
�: q2 = �� − q1x,�/2� ,

v1
�: q3 = �− q1x,− �/2� ,

v2: q4 = �q1x − �,− �/2� . �3.11�

These two choices lead to two models for the vison PSGs,
Visons, model I:

T1: v1 → eiq1xv1, v2 → ei�−iq1xv2, b� → b�,

T2: v1 → ei�v2
�, v2 → − ie−i�v1

�, b� → − b�,

Px: v1 → e−i�v1
�, v2 → − ei�v2

�, bx → bx,

by → − by, bt → − bt,

Py: v1 → v2
�, v2 → v1

�, bx → − bx, by → by,

bt → − bt,

T: va → va
�, b� → b�, �3.12�

where � and � are two incommensurate angles.
The second model for the vison PSG is

w
w'

x

y

FIG. 4. �Color online� The dual Ising model describing the vison
dynamics in the dual honeycomb lattice. All the vertical bonds have
hopping amplitude w�; all the other bonds have hopping amplitude
w. Note that a small J� /J implies a large w� /w, and vice versa.
Besides the lattice anisotropy, there is a � flux through every hexa-
gon, which frustrates the vison kinetics. This flux is implemented
by changing the sign of the dotted w bonds.
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Visons, model II:

T1: v1 → eiq1xv1, v2 → e−i�+iq1xv2, b� → b�,

T2: v1 → ei�v2, v2 → iei�v1, b� → b�,

Px: v1 → e−i�v1
�, v2 → − e−i�v2

�, bx → bx,

by → − by, bt → − bt,

Py: v1 → v2, v2 → v1, bx → bx, by → − by, bt → bt,

T: va → va
�, b� → b�, �3.13�

where again � and � are two incommensurate angles when
the lattice is distorted. For an isotropic triangular lattice, �
=−� /12 and �=� /6, and they will continuously evolve to
vison model III by tuning the distortion of the lattice.

Finally, let us move to the case where the four minima in
the vison band merge to two. In model I, v1 and v2 merge
together, while in model II v1 and v2

� merge together. But v1
and v2

� carry opposite gauge charges in the CS theory, and so
this merger violates the gauge invariance. So if we want to
evolve smoothly from four minima to two minima, we have
to take model I.

After the merger, the two minima are located at
�� /2,� /2� and �−� /2,−� /2�. So we have just to use one
component complex vison v, and its PSG leads to

Visons, model III:

T1: v → iv, b� → b�,

T2: v → − e3�i/4v�, b� → − b�,

Px: v → − iv�, bx → bx, by → − by, bt → − bt,

Py: v → v�, bx → − bx, by → by, bt → − bt,

T: v → v�, b� → − b�. �3.14�

Finally, we consider the nature of the vison order param-
eters vavb and va

�vb which appear in the phases in Fig. 3. The
simplest case is model III, with only one complex vison v, in
which case the only nontrivial order parameter is v2. From
the PSG, we see that v2 is the square lattice VBS order
parameter, associated with the VBS state shown in Fig. 2.
Using the definitions Vx̄,ȳ for this order parameter in Ref. 3,
we have Vx̄
cos��+� /4� and Vȳ 
cos��−� /4�, where v2

=exp�i��. Here �and henceforth�, the axes x̄ and ȳ refer to
the principle axes of the “square” lattice formed by the J
bonds in Fig. 1.

The vison order parameters for the other models also de-
scribe VBS orders but of a different nature. The vison opera-
tor va is subject to a Z2 gauge invariance. Therefore the
physical VBS order parameter should always be bilinear in
va. There are in total 15 independent bilinear of va, and the
detailed VBS pattern drive by vison proliferation depends on
the Hamiltonian of visons, which will be discussed in Sec.
IV.

IV. PHASE DIAGRAMS

Now we turn to the crucial question of combining the
spinon and vison PSGs in Sec. III into consistent theories of
the form in Eq. �1.1�. We will denote the resulting theories
by an obvious notation; i.e., the theory BIII has spinons un-
der model B and visons under model III.

In principle, there are now six possible theories, AI, AII,
AIII, BI, BII, and BIII, and associated phase diagrams. To
establish the consistency of these theories, we have to exam-
ine the transformation of the CS term under the respective
spinon and vison PSGs. The results of such an analysis are
summarized in Table I for all theories. We see that under
theories BI and BIII the Chern-Simons term is strictly invari-
ant, and so these theories are clearly consistent. For the re-
maining theories, the overall form of the CS term remains
invariant, but some of the transformations do lead to a
change in sign of the CS term. However, the role of the CS
term here for k=2 is only to implement a mutual semionic
phase of �, and this is invariant under the sign change.
Equivalently, we are free to define the vison at momentum Q
to be either v or v�, which means that in the system there
should be particle-hole symmetry of vison; i.e., on average
the spinons see zero flux. This particle-hole symmetry corre-
sponds to the free choice of the sign of gauge charge of
vison, and leads to the freedom of the sign of the mutual CS
term.

A. Model AI

The Lagrangian should be invariant under all the symme-
try and PSG transformations, which in general takes the form

L = �
�=1

2

����� − ia��z��2 + sz�z��2	

+ �
a=1

2

����� − ib��va�2 + sv�va�2	 +
ik

2�
���	a���b	

+ uz��
�=1

2

�z���2

+ uv��
a=1

2

�va��2

+ g�v1�2�v2�2 + ¯ .

�4.1�

Let us first identify all the symmetries of this Lagrangian.
The U�1� gauge symmetries associated with gauge field a�

and b�, correspond to two global U�1� symmetries U�1�a

TABLE I. Transformation of the mutual Chern-Simons term un-
der the space-group operations for the various theories. The CS
term changes its overall sign, as indicated.

BI and BIII AI and AIII AII BII

T1 + + + +

T2 + − + −

Px + − − +

Py + + − −

T + − − +
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�U�1�b in the dual picture, which lead to the conservation of
gauge fluxes. Through the mutual CS term, the gauge flux of
a� is attached with the vison number, and the gauge flux of
b� is attached with the spinon number. On top of the U�1�
gauge symmetries, the global symmetry of this Lagrangian to
the fourth order of z� and va is SU�2�spin�U�1��Z2. The
U�1� symmetry corresponds to the U�1� transformation on
vison bilinear v1

�v2; the Z2 symmetry corresponds to inter-
changing v1 and v2, which physically can be understood as
the reflection symmetry Py. If the lattice is an undistorted
triangular lattice, g=0, and the vison doublet enjoys an en-
larged SU�2� flavor symmetry in this mutual CS theory �or
an O�4� symmetry in a theory with only vison�. The ellipses
in Eq. �4.1� include terms no less than sixth order of va,
which may introduce higher-order anisotropy. In the dis-
torted triangular lattice, the lowest-order term which breaks
the symmetries in Eq. �4.1� is at the eighth order:

L8 = g8�v1v2�4 + H.c. �4.2�

In the undistorted lattice, the lowest-order symmetry-
breaking term is at the sixth order. If only the terms below
fourth order are considered, we can minimize the Lagrangian
in Eq. �4.1� with tuning parameters sz and sv, and obtain the
phase diagrams in Figs. 5 and 6, with the phases described in
Secs. IV A 1 and IV A 3.

1. Z2 spin-liquid and spiral phases

The phase with both the spinons and visons gapped out
�sz�0, sv�0� is the Z2 spin liquid, as was discussed in Secs.
I and II, has fourfold topological degeneracy on a compact
torus. The phase with visons gapped and spinons condensed
�sv�0, sz
0�, is the incommensurate spin spiral state, with
wave vector Q. With the vison gapped, the gauge field b� is
in the photon phase, and so the CS term “Higgses” out the
gauge field a�. Or more precisely, for k=2, one gauge flux of
b� carries two gauge charges of a�. Therefore the photon

phase of b�, which is the superfluid phase of gauge flux,
breaks the U�1� gauge invariance of a� to Z2, as was dis-
cussed in Sec. II. As also noted in Sec. II, this implies that
the GSM of the spinon condensate is S3 /Z2, and this is the
GSM of the spiral spin state. Another way to understand this
phase is that, because the vison number is attached with the
flux number of a� through the mutual CS term, in the Mott
insulator phase of vison the photon of a� is gapped out,
while b� is in the photon phase. The global symmetry U�1�b
becomes the global U�1� symmetry of the spinon z�, which
according to the PSG in Eq. �3.4� corresponds to the physical
translation transformation.

2. Vison condensate with sv
0 and sz�0

The nature of the phase with spinon gapped and vison
condensed depends on the sign of g in Eq. �4.1�. With the
spinon gapped, the U�1� gauge field b� is broken down to Z2
gauge field. Integrating out the remnant Z2 gauge field, the
vison va enjoys a U�1��U�1��Z2 symmetry. The two
U�1�’s correspond to the global symmetry of two flavors of
visons respectively, and the Z2 symmetry corresponds to the
interchange symmetry between v1 and v2. With g�0, the
vison condensate breaks the U�1��U�1��Z2 symmetry to
U�1� symmetry; i.e., only one flavor of va condenses. Let us
assume z1 condenses, and z2 remains gapped. The GSM of
the vison condensate is S1�Z2. The Z2 degeneracy is de-
scribed by the Ising order parameter v†�zv, which corre-
sponds to the stripe order depicted in Fig. 7. The S1 in the
GSM is described by the order parameter v1

2, which corre-
sponds to an incommensurate valence-bond density wave
along the x direction with wave vector �2q1x ,��, and mean-
while breaks the Ising symmetry of interchanging v1 and v2,
or the reflection symmetry Py. The continuous symmetry
U�1� transformation of v1 which has been broken by this
valence-bond density wave is the translation along x̂. Be-
cause v1 carries an incommensurate momentum, the full La-
grangian in Eq. �4.1� with all the higher-order perturbation
should preserve this global U�1� symmetry, and the GSM
S1�Z2 is not broken down to smaller manifolds. For in-
stance, the eighth-order term L8 violates the vison numbers

Z2 spin liquid

Spiral
antiferromagnet

Stripe +
incommensurate

valence bond wave

Stripe +
spin nematic

FIG. 5. Phase diagram of model AI with g�0. The stripe order
is illustrated in Fig. 7, while the spiral antiferromagnet is as in
Fig. 2.

Z2 spin liquid

Spiral
antiferromagnet

Square latticeVBS +
incommensurate

valence bond wave

Spin nematic +
incommensurate

valence bond wave

FIG. 6. Phase diagram of model AI with g
0. The square lat-
tice VBS state is as illustrated in Fig. 2.

FIG. 7. �Color online� Illustration of the Z2 stripe order. This can
be viewed as a bond density wave, with alternating signs on suc-
cessive rows of bonds.
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of both v1 and v2; in the phase with only v1 condensed, L8 is
suppressed.

If g
0, the vison condensate breaks its global symmetry
to Z2; i.e., both v1 and v2 condense with equal stiffness. The
GSM is S1�S1 if there are no more symmetry-breaking
terms. The two S1’s correspond to two U�1� order parameters
v1v2 and v1

�v2, respectively. The U�1� symmetry of v1
�v2 is

preserved by the full Lagrangian, while the U�1� symmetry
of v1v2 is broken by the eighth-order term L8 in Eq. �4.2�.
This term breaks the U�1� symmetry of v1v2 to Z4 symmetry.
Actually, the order parameter v1v2 corresponds to the Z4 de-
generacy of the four VBS states, which are smoothly con-
nected to the fourfold-degenerate VBS states in the square
lattice limit with J�
0. Using the square lattice coordinates,
the VBS order parameters are

Vx̄ 
 v1v2 exp�i�/4� + v1
�v2

� exp�− i�/4� ,

Vȳ 
 v1v2 exp�− i�/4� + v1
�v2

� exp�i�/4� . �4.3�

The square lattice VBS order is selected when g8�0; other-
wise the fourfold-degenerate plaquette state is favored. On
top of this commensurate VBS order, an incommensurate
valence-bond density wave corresponding to v1

�v2 is also
present, with wave vector ��−2q1x ,0�.

3. Phase with both spinons and visons condensed
(sz
0 and sv
0)

The most interesting phase is the phase with both spinons
and visons condensed. In this phase, the physical order pa-
rameter should be the U�1� gauge-invariant bilinears of z�

and va, as discussed in Sec. II. The spin order parameter is
the nematic vector n�3
z†�az. The VBS pattern, depending
on the sign of g, is either the Z2 order parameter v†�zv or the
incommensurate valence-bond density wave v1

�v2. Note,
however, that the commensurate VBS order parameters Vx̄
and Vȳ vanish because they are not gauge invariant. Another
way of understanding the vanishing of Vx̄ and Vȳ is as fol-
lows: when the spinon z� is still condensed, the flux of a� is
in the Mott insulator phase. Because the flux number of a� is
attached to the vison number through the mutual CS term,
any order parameter violating the vison number conservation
should not condense. The GSM of this phase is either Sspin

2

�Z2 �g�0� or Sspin
2 �S1 �g
0�. Furthermore, these GSMs

are not lifted by any higher-order term in Lagrangian equa-
tion �4.1�.

Also note that L8 in Eq. �4.2� violates the gauge symme-
try of b�. In the condensate of visons, L8 confines the fluxes
of b�, and hence the spinon excitation z� is also confined,
which is consistent with the intuitive understanding of VBS
states.

B. Model AII

The phase diagram of this model is very similar to that in
Sec. IV A, model AI. The only difference is that we now
replace v2 with v2

�. So the spiral spin-density wave, the Z2
spin liquid, and the VBS order are the same as in model AI.
The commensurate VBS order parameter is now represented
as

Vx̄ 
 v1v2
� exp�i�/4� + v1

�v2 exp�− i�/4� ,

Vȳ 
 v1v2
� exp�− i�/4� + v1

�v2 exp�i�/4� . �4.4�

In addition the incommensurate valence-bond wave is repre-
sented by v1v2.

In model AII, the VBS pattern with both spinons and vi-
sons condensed is different from model AI. Because in this
phase all the physical order parameters should be U�1� gauge
invariant, the VBS order parameter is either the Z2
symmetry-breaking v†�zv, or the Z4 symmetry-breaking Vx̄

and Vȳ depending on the sign of g. The GSM is Sspin
2 �Z2

�g�0� or Sspin
2 �Z4 �g
0�. The phase diagram is shown in

Fig. 8.

C. Model AIII

In this model there is only one complex vison. The Z2
spin liquid and the spiral spin state are the same as in the two
previous models. The vison condensate induces the fourfold-
degenerate VBS order, with order parameters Vx̄

v2 exp�i� /4�+H.c. and Vȳ 
v2 exp�−i� /4�+H.c. How-
ever, one can no longer write down a U�1� gauge-invariant
order parameter in terms of v. Therefore the phase with both
spinons and visons condensed has only the nematic order n�3,
and no other lattice symmetry breaking. The phase diagram
is shown in Fig. 9.

If the parameter t� / t is tuned, the four vison minima will
merge to two vison minima; i.e., the two complex visons
become one complex vison. Therefore by tuning t� / t, model
AIII can be connected to model AI.

D. Models BI, BII, and BIII

These models are similar to models AI, AII, and AIII. The
main difference is that in the phase with both spinons and
visons condensed, the spin order is the collinear Néel order,

Z2 spin liquid

Spiral
antiferromagnet

Square latticeVBS +
incommensurate

valence bond wave

Spin nematic +
square latticeVBS

FIG. 8. Phase diagram of model AII with g
0. The phase dia-
gram of model AII with g�0 is the same as that for model AI with
g�0.

Z2 spin liquid

Spiral
antiferromagnet

Square latticeVBS

Spin nematic

FIG. 9. Phase diagram of model AIII.
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in place of the spin nematic order parameter. The phase dia-
gram for model BIII was shown in Fig. 2.

We now discuss in some detail how the spiral order
emerges in model B, as this is not evident from the underly-
ing spin representation in Eq. �3.5�. If we use only the con-
straints imposed by the model B PSG in Eq. �3.6�, then the
Lagrangian of the spinons allows an additional linear spatial
derivative term in the Lagrangian of spinon of

Lx 
 ���z��xz� + H.c. �4.5�

The term Lx violates the enlarged U�1� gauge invariance of
the mutual CS Lagrangian discussed below Eq. �3.5�. The
mutual CS term will bind this term with the monopole op-
erator of b�, which creates 2� b� gauge flux. We denote this
monopole operator by Mb, then in the U�1� gauge-invariant
formalism Lx reads

Lx 
 Mb���z��xz� + H.c. �4.6�

In the phase with both spinons and visons condensed, the
term Lx is suppressed because of the conservation of the flux
of b� which is attached to the spinon number of z�. However,
once the visons are gapped, the monopoles Mb condense
and Lx becomes relevant. Due to its linear derivative of x, Lx
will drive the system into an incommensurate spiral state
with wave vector along x̂ axis, as has been described in Ref.
8. The size of the incommensurate wave vector increases
linearly with �Mb�
��b, where �b is the stiffness of the b�

flux condensate, which is proportional to the gap of vison.

V. QUANTUM PHASE TRANSITIONS

There are many phase transitions involved in the phase
diagrams discussed in Sec. IV. We will study them in the
same manner as in Sec. IV.

Before turning to the individual cases, it is useful to dis-
cuss an alternative form of the mutual CS theories �Eq.
�1.1��. For many of the vison models, it is possible to60,61

undualize the vison degrees of freedom: this leads to an al-
ternative formulation of the theory, now without a CS term.
This undualized form will be useful for many purposes.

Let us first consider the simplest case of a single complex
vison, as in model III. By the usual boson-vortex duality,60

the dual of v is the monopole operator Mb introduced below
Eq. �4.6�. This monopole operator carries charge k=2 under
a�, and consequently we can write the theory for the two-
component spinor z� and the complex “Higgs” scalar Mb.
Thus a theory equivalent to Eq. �1.1� for models AIII and
BIII is

LM = �
�=1

2

����� − ia��z��2 + sz�z��2	 + ���� + 2ia��Mb�2

− sv�Mb�2 + uz��
�=1

2

�z���2

+ uM�Mb�4

+ vM�Mb�2��
�=1

2

�z��2� + 	�Mb���z��xz� + H.c.� .

�5.1�

The 	 term descends from Eq. �4.6� and is present only for
model BIII. A closely related model, for a similar model, was
obtained directly from the Schwinger boson formulation in
Ref. 8. Note that we have �schematically� changed the sign
of the “mass” term for Mb from that for the vison v. This
reflects the dual relation between the fields and the fact the v
is condensed when Mb is gapped, and vice versa. We note
that the mapping between the CS theory in Eq. �1.1� and the
non-CS theory in Eq. �5.1� is similar to that described for
supersymmetric gauge theories in Ref. 50.

A similar �un�duality mapping can applied to visons in
models I and II. This mapping only works for the g
0
�“easy-plane”� case of the theory in Eq. �4.1�. In this case,
the vison fields v1,2 and the gauge field b� form an easy-
plane CP1 model, and so we can directly use the duality
mappings of Ref. 61. The dual theory is yet another CP1

model, with fields m1 and m2 and a gauge field c�. Here m1,2
are merons in the vison CP1 model, and the monopole in the
b� field is3,61 Mb
m1m2. Thus a form of theory �4.1� for
models AI, AII, BI, and BII with g
0 is

Lm = �
�=1

2

����� − ia��z��2 + sz�z��2	 + ���� + ia� + ic��m1�2

+ ���� + ia� − ic��m2�2 − sv��m1�2 + �m2�2	

+ uz��
�=1

2

�z���2

+ um��m1�2 + �m2�2	2 + gm�m1�2�m2�2

+ vm��m1�2 + �m2�2	��
�=1

2

�z��2�
+ 	�m1m2���z��xz� + H.c.� . �5.2�

Again the 	 term is present only for models BI and BII. Also
the phase diagrams can be mapped by keeping in mind the
dual relation between the visons v1,2 and the merons m1,2: the
visons are condensed when the merons are gapped, and vice
versa. Now we will turn to a description of the transitions for
the various models, using the theories in Eqs. �1.1�, �4.1�,
�5.1�, and �5.2�.

A. Phase transitions in model AI

1. Transition between Z2 spin liquid and spiral spin state

This transition is known54–56 to be a three-dimensional
�3D� O�4� transition, and the mutual CS theory does repro-
duce this O�4� universality class: in the Z2 spin liquid, the
vison is gapped. Therefore the gauge field a� is Higgsed by
gauge field b�, and the U�1� gauge symmetry of a� is broken
down to the Z2 gauge symmetry. The critical point described
by spinon z� enjoys an enlarged O�4� symmetry.

2. Transition between Z2 spin liquid and the VBS state

The nature of this transition depends on the sign of g.
When g
0, the Lagrangian describing this transition is
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L = �
a=1

2

���va�2 + r�va�2 + uv�va�4 + �2uv + g��v1�2�v2�2 + g8v1
4v2

4.

�5.3�

This Lagrangian describes two coupled 3D XY transitions.
The coupling g8 is clearly irrelevant at this 3D XY transition.
The scaling dimension of u12=2uv+g is 2 /�−D
0, and
therefore is also irrelevant �� is the critical exponent defined
as �
r−� at the 3D XY transition, which is greater than 2/3�.
So the transition between the Z2 spin liquid and the VBS
order is two copies of 3D XY transitions when g
0.

When g�0, the transition breaks the U�1��Z2 symme-
try. There can be one single first-order transition or two sepa-
rate transitions, with 3D XY and 3D Ising universality class,
respectively. If the triangular lattice is undistorted, g=0,
there is one single transition between the Z2 spin liquid and
the VBS order, which belongs to 3D O�4� universality class.

3. Transition between spiral spin state and the nematic +VBS
state

If g
0 �g�0�, this transition is described by a CP1 La-
grangian with easy-plane �easy-axis� limit:

L = �
a=1

2

���� − ib��va�2 + sv�va�2 + ¯ . �5.4�

The eighth-order anisotropy term L8 is suppressed at this
transition because the condensate of spinon is the Mott insu-
lator phase of the flux of a�, which guarantees the conserva-
tion of total vison number.

4. Transition between VBS order and nematic order

This is a CP1 transition described by spinon z� and U�1�
gauge field a�. The eighth-order anisotropy term of vison
v1

4v2
4+H.c. violates the conservation of the flux of a�; i.e., it

corresponds to the instantons in the 2+1d space-time which
creates/annihilates gauge fluxes. Because k=2 in Eq. �4.1�,
one flux of a� carries two visons; therefore L8 corresponds
to a quadrupole process. If g�0, only one component of v1
and v2 condenses; the quadrupole process which involves
both v1 and v2 is suppressed. However, if g
0, the quadru-
pole process is present, but expected to be irrelevant at the
CP1 critical point.3 We note here recent numerical studies of
the CP1 field theories, which include indications that this
transition is weakly first order.61–66

One other issue to notice is that the spinon velocity and
the vison velocity do not have to be equal. Therefore in the
CP1 models described above, the velocity of matter fields
and the velocity of gauge fields are essentially different. In
the large-N limit, the U�1� gauge field has scaling dimension
of 1, and the one-loop self-energy of gauge field leads to the
same velocity as the matter fields. The term with velocity
anisotropy has scaling dimension of 4, and hence is irrel-
evant for large enough N.

B. Phase transitions in model AII

The phase transitions in model AII are similar to those in
model AI. The only difference is that the eighth-order vison

term L8=g8�v1v2
��4+H.c. conserves the total flux number of

a�. Therefore there is no quadrupole process at the transition
between the nematic order and the VBS order.

C. Phase transitions in model AIII

In model AIII, the transition between the spiral spin order
and the Z2 spin liquid is still O�4�, while the transition be-
tween the Z2 spin liquid and the VBS order is a 3D XY
transition �with an irrelevant eighth-order anisotropy�, be-
cause there is only one flavor of vison.

The transition between the spiral spin order and the nem-
atic spin order is an inverted 3D XY transition,60 or a CP0

model with one component of complex boson v coupled with
the U�1� gauge field b�. The transition between the nematic
order and the VBS order is a CP1 transition with irrelevant
quadrupoles.

D. Phase transitions in models BI, BII, and BIII

The transitions in the models with spinon B are similar to
the models with spinon A. The major concern is the effect of
Lx in Eq. �4.6� at the critical points. As discussed in Sec.
IV D, this term is only effective when the vison is gapped or
critical, such as, for instance, the transition between the Z2
spin liquid and the spiral antiferromagnet. The theory for this
transition with spinon A was the O�4� model. With the term
Lx present in model B, we can redefine the spinon field using
a x-dependent O�4� rotation to absorb the linear x
derivative.8 The transition is therefore seen to remain in the
O�4� class in model B.

At the transition between the Néel order and spiral order,
the field theory is given by a CP�N−1� model with N flavors of
visons �N=1 or 2� and gauge field b�. Lx violates the con-
servation of spinon, and hence corresponds to a monopole
term Mb of b�. For simplicity, let us consider model BIII
with one vison component as an example. Here we can ana-
lyze the Néel-spiral transition from the theory in Eq. �5.1� by
condensing the monopole operator Mb. We parametrize the
spinon z as z=ei�(ei�/2 cos�� /2� ,e−i�/2 sin�� /2�)t, where � is
a gauge-dependent phase angle coupled with the gauge field
a�. Then the effective Lagrangian can be written as

L = �����2 + �sin ��2�����2 + 	̃��x� Re�M̃b�

+ �x� sin � Im�M̃b�� , �5.5�

where M̃b is the gauge-invariant monopole M̃b=Mbe2i�.
Integrating out the gapless spin waves � and �, a singular

long-range dipole interaction is generated for field M̃b with
momentum dependence qx

2 / �q2+�2�, which will change the
relative scaling dimension between x and y ,
. The effective

theory for XY field �
M̃b can be viewed as an effective
z=2 theory with scaling dimension ��qx�=2��qy�=2����
=2:

CENKE XU AND SUBIR SACHDEV PHYSICAL REVIEW B 79, 064405 �2009�

064405-12



L� =
qx

2

qy
2 + �2 ���2 + �qy

2 + �2����2 + g���4 + ¯ . �5.6�

The upper critical dimension of this z=2 field theory is d
=2. Therefore this transition will be a mean-field transition
instead of a 3D XY transition.

For Nv=2 theories in Eq. �5.2�, a similar dipolar term is
generated at the quartic term for mi. A more detailed analysis
is required to determine the fate of this quartic term.

E. Isotropic triangular lattice

This subsection will briefly comment on the modifications
of our results for the case of the isotropic triangular lattice,
with J�=J and full sixfold rotation symmetry. There is one
more symmetry that needs to be considered: the 2� /3 rota-
tion. Under this rotation, the visons of model II transform as

R2�/3: v1 →
1
�2

e−i�/4v1 +
1
�2

v2, v2 → −
1
�2

v1 +
1

2
e�i/4v2.

�5.7�

This PSG transformation is consistent with the enlarged U�1�
gauge symmetry, while in model I, visons will be mixed with
its complex conjugates. Therefore on the isotropic triangular
lattice only model II of visons is consistent. Further, the
spinon minima are located at the commensurate wave vec-

tors Q� = �2� /3,0� and −Q� =−�2� /3,0�. Therefore under
translation spinons in model A will merely gain a phase fac-
tor, while in model B spinons will be mixed with their com-
plex conjugates. Therefore on the isotropic triangular lattice,
only model AII is consistent with the enlarged U�1� gauge
symmetries.

In the mutual CS theory of model AII on the isotropic
lattice, g=0, in the phase with both spinon and vison con-
densed, the VSB order parameter is described by the SU�2�
vector v†�av, which corresponds to degenerate stripe orders
Vx̄ and Vȳ in Eq. �4.4� and Vz=v†�zv depicted in Fig. 7.
These stripe orders are connected to each other through ro-
tation R2�/3. Notice that on the distorted triangular lattice,
stripe order Vx̄ has the same symmetry as the square lattice
VBS order.

Because g=0, the global symmetry of vison up to the
fourth-order term is SU�2� in the mutual CS theory, and O�4�
in the theory with only visons. The GSM of the phase with
both spinon and vison condensed is S2�S2 as far as the
fourth-order terms are considered. Therefore the transition
between the Z2 spin liquid and the VBS order is a 3D O�4�
transition,16 and the transition between the nematic/VBS or-
der to the spiral order in phase diagram Fig. 8 is a CP1

transition. The PSG of visons allow a sixth-order anisotropy
term on the isotropic triangular lattice:16

L6 = g6�v1v2
5 + v2v1

5 + H.c.� . �5.8�

This term corresponds to the triple monopole process in the
dual picture, which annihilates/creates three fluxes of gauge
field a�. This triple monopole is expected to be relevant
when gauge field a� is gapless, which will likely drive the
transition between the nematic/VBS and the VBS phase to a
first-order transition.

F. Multicritical point, sz=sv=0

We now study the multicritical point with both spinons
and visons gapless: this is the point M in Fig. 3. The most
convenient way of studying M is likely via the non-CS theo-
ries in Eqs. �5.1� and �5.2�, although these do not apply for
the g�0 cases. This formulation should be amenable to di-
rect numerical study.

For analytic results, the only available tool is the 1 /N
expansion; for this we may as well work with the original CS
theory in Eq. �1.1�. This expansion relies on the assumption
that in Eq. �4.1� N
Nv
k is large. The 	 term in Eqs. �5.1�
and �5.2� generalizes to terms with k powers of z�, and these
are surely irrelevant for large k. So we ignore the influence
of Lx for models B in the 1 /N expansion.

A systematic 1 /N expansion for the CP�N−1� model has
been calculated previously.67,68 The 1 /N correction comes
from the one-loop propagator of both the Lagrange multi-
plier 	 and gauge field a�:

L =
1

g
���� − ia��z�2 + i	��z�2 − 1� + ¯ . �5.9�

The one-loop propagators of 	 and a� are

D�� =
1

�A
���� − �

q�q�

q2 �, �A =
Np

16
,

D	 =
1

�	

, �	 =
Np

8
. �5.10�

For instance, we can calculate the anomalous dimension �N
of gauge-invariant operator z†Taz defined as ��z†Taz�= �D
−2+�N� /2, and Ta is one of the generators of SU�N� algebra.
Note that this operator is the magnetic order parameter for
model B, and the spin nematic order parameter for model A.
In the CP�N−1� model, the anomalous dimension �N was cal-
culated in detail in Ref. 68, and the result is

�N = 1 +
32

3�2N
−

128

3�2N
. �5.11�

The second term on the right-hand side of the equation above
comes from the Lagrange multiplier, while the third term
comes from the gauge field.

After including the vison multiplet va and mutual CS
term, the 	 propagator is unaffected, while the gauge field
propagator is modified:

D�� =
1

�̃A

���� − �
q�q�

q2 �, �̃A =
Np

16
�1 +

64k2

�2N2� .

�5.12�

All the calculations can be carried out straightforwardly by

replacing �A in Ref. 68 by �̃A. When k
N, the correction
from the vison and mutual CS theory to the anomalous di-
mension �N is on the order of 1 /N:
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�N = 1 +
32

3�2N
−

128

3�2N
�

1

1 + 64k2/��2N2�
. �5.13�

All the other critical exponents can be calculated in a similar
way.

VI. BEYOND U(1) CHERN-SIMONS THEORIES

In Secs. IV and V, the global phase diagrams and nature
of phase transitions were studied with the mutual CS theory.
In this section we will try to look at these phases and tran-
sitions in a more intuitive and pictorial way. Let us start with
the case with undistorted triangular lattice, which has a
ground state with spiral antiferromagnetic order. This spiral
order is described in terms of the z by Eq. �3.3�.

Intuitively, to destroy magnetic order, the most straight-
forward way is to proliferate the topological defects in this
magnetic order. The fundamental group of the GSM of spiral
order is �1�SO�3��=Z2, which supports a topologically
stable half vortex if rewritten in terms of z. These half vor-
tices become full vortices of vectors n� i, with i=1,2 ,3, in Eq.
�3.3�. These vortices can be most easily understood as an
ordinary vortices of two of the three vectors n� i, while keep-
ing the third vector uniform in the whole 2d plane: see Fig.
10. The GSM of this state has isometry group SO�4�. If the
system has the enlarged O�4� symmetry at the microscopic
level, all the vortices with different uniform vectors �UVs�
will have the same energy. However, the underlying symme-
try is only SU�2��PSG, so the energy of the vortices de-
pends on the UV. The lattice symmetry guarantees that the
vortices with different UVs have the same energy as long as
the UVs can be transformed to each other through lattice
symmetry transformations. There are in total three groups of
vortices:

�1� UV:n�3,

�2� UV:n�1, −
1

2
n�1  

�3

2
n�2,

�3� UV:n�2,  
�3

2
n�1 −

1

2
n�2. �6.1�

All the flavors of vortices in each group have the same en-
ergy, while there is no symmetry to protect the degeneracy

between different groups. For instance, UV n�3 can never be
transformed into n�1 because of their opposite behaviors un-
der time-reversal transformation. The first group of vortex
has only one flavor, and if we only proliferate this vortex
flavor, the spin orders of n�1 and n�2 are destroyed, while the
nematic order n�3 is preserved. This leads to a state with GSM
S2, and it is the situation described by the mutual CS theories
AI, AII, and AIII. The second and third groups have more
than one flavor of vortices, with different flavors of vortices
connected to each other through lattice symmetry transfor-
mations. If all the flavors of vortices in group 2 or 3 con-
dense, the magnetic order is completely destroyed, and we
expect these vortices to drive a direct transition from the
�3��3 antiferromagnetic spiral order to VBS order. The
nature of this transition requires further study, and it cannot
be naturally described by our mutual CS theory. In our
theory, there are always two tuning parameters �sz and sv�,
and it would require some fine-tuning to induce a direct tran-
sition. A theory based on a mutual Z2 CS formalism has been
proposed by another group69 to describe this direct transition.

One can also condense one flavor of the second or the
third group of vortices, which can be realized in the situation
with strong repulsions between different flavors of vortices
in one group. If the vortex with UV n�1 is condensed, the
vectors n�2 and n�3 are disordered, and the remnant magnetic
order is the up-down-down state in Fig. 11�a� with zero total
magnetization, and the GSM of this up-down-down state is
S2�Z3. The S2 corresponds to the direction of n�1, and the Z3
corresponds to the choice of condensing the three flavors of
vortices in the second group of Eq. �6.1�, which are con-
nected to each other via translation along the x axis. If vortex
with UV n�2 is condensed, the spin pattern becomes the up-
down-zero state in Fig. 11�b�, also with GSM S2�Z3. The
transition driven by the condensation of vortices with UV n�1
and n�2 can no longer be described by the U�1� mutual CS
theory because in the phase with both spinons and visons
condensed, the physical order parameter of the remnant spin
order should be U�1� gauge invariant. Thus now one needs a
spinon z� such that the UV n1=z†�az. However, under trans-
lation, so-defined spinon z� becomes a linear combination
between z� and ���z�

� , which violates the U�1� gauge sym-
metry.

To consistently describe the transition driven by prolifera-
tion of vortices with UV n�1 and n�2, a theory based on mutual

FIG. 10. �Color online� Schematic of the orientation of the or-
thogonal vectors n�1, n�2, and n�3 around a vortex in the SO�3� GSM
of the spiral antiferromagnet. One of the vectors has a constant
orientation, while the other two precess by an angle of 2�.

(b)(a)

FIG. 11. �Color online� The remnant spin order pattern after
proliferation of one single flavor of group 2 and 3 vortices in Eq.
�6.1�. �a� Proliferation of the first flavor in group 2; the spin pattern
is up-down-down, and the GSM is S2�Z3. Notice that the moment
of the up-spin site is twice as much as the down-spin site, so the
total magnetization is zero. �b� Proliferation of first flavor in group
3; the spin pattern is up-down-zero with GSM S2�Z3.
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Z2 CS theory may be applicable, similar to the Z2 CS formal-
ism proposed for cuprates36 where the spinons and half vor-
tices of the superconducting phase are coupled together
through mutual Z2 CS fields. On the distorted triangular lat-
tice antiferromagnets examined in this work, the mutual Z2
gauge field also imposes the correct semionic statistics be-
tween the spinon and vison. However the Z2 gauge field can
only be conveniently formulated on the lattice. Therefore we
are unable to comment on all the universal properties of the
transitions described by the mutual Z2 CS theory.

If the triangular lattice is distorted, the spin spiral state
becomes incommensurate, and the vector n�1 and n�2 can be
transformed to each other via lattice translation. Therefore
there are only two groups of vortices:

�1� UV:n�3,

�2� UV:n�1, rotation of n�1 around n�3. �6.2�

The second group of vortices has an infinite number of fla-
vors, and if one of these flavors proliferates, then the spin
state becomes a collinear incommensurate spin-density
wave, which has GSM S2�S1. The S2 corresponds to the
remnant spin collinear order, while the S1 corresponds to
translation along x̂ of the incommensurate wave vector.

VII. CONCLUSIONS AND EXPERIMENTAL
IMPLICATIONS

This paper has described examples of a general approach
to describing the phases and quantum phase transitions of
S=1 /2 antiferromagnets in two dimensions. Our examples
were limited to models on the lattice in Fig. 1 because of its
experimental importance. However, we expect that similar
analysis should be useful, e.g., on the kagome lattice. Our
main results are summarized in phase diagrams, such as that
in Fig. 2. The same phase diagram was obtained earlier8 in a
more direct microscopic mean-field theory, but the nature of
the phase transitions and possible multicritical point was left
open. Our present dual approach also immediately yields the
required critical-field theories.

One of the transitions in our phase diagram in Fig. 2 is the
Néel-VBS transition, which is described by a CP1 field
theory. This transition has been the focus of much recent
numerical work.61–66 The numeric results on the S=1 /2
quantum antiferromagnet strongly support its effective de-
scription in terms of the CP1 field theory. However, some
results64,65 on system sizes larger than 50�50 indicate that
the transition in the CP1 model may well be weakly first
order. The multicritical point M has additional flavors of
matter fields, and these make it less likely that M is first
order. Consequently it would be useful to study M numeri-
cally using the theories in Eqs. �5.1� and �5.2�: this will help
in describing M and the phase diagram in its immediate vi-
cinity. This study can be done with or without the 	 coupling
in Eqs. �5.1� and �5.2�.

As mentioned in Sec. I, a series of measurements on the
distorted triangular lattice materials X�Pd�dmit�2�2 with dif-
ferent anisotropic couplings J� /J reveal a possible direct

transition between the Néel order and the VBS state. One
particular material with X=EtMe3Sb was suggested to be
close to the quantum critical point. In our mutual CS theory,
as well as the previously proposed deconfined critical point,3

this transition is described by the CP1 model with irrelevant
quadrupole operators. The quantum critical behaviors
at finite temperature can be measured in material
EtMe3Sb�Pd�dmit�2�2. For instance, the nuclear-magnetic-
resonance �NMR� relaxation rate 1 /T1 scales as 1 /T1
T�N,
where �N is the anomalous dimension of the Néel order pa-
rameter at the CP1 fixed point. Even if the transition in the
CP1 model is ultimately weakly first order, the critical regime
could be observable at intermediate T, and compared to nu-
merical estimates62,63,66 of �N.

We conclude by commenting on the recent interpretation
in Ref. 32 of experimental observations on the spin-liquid
compound �-�ET�2Cu2�CN�3. It was suggested in Ref. 32
that the very-low-T nuclear magnetic resonance was con-
trolled by the O�4� criticality between the spiral and Z2 spin-
liquid states, while the intermediate-temperature NMR could
be modeled by a multicritical point where both the spinons
and visons are gapless. Crucial to this interpretation was the
requirement that the anomalous dimension of the magnetic
order parameter, �N, was smaller at the latter multicritical
point than at the low-T O�4� critical point.

Here, we have provided examples of such multicritical
points, such as point M in Fig. 2. For spinons in model B, the
magnetic order parameter is z†Taz, and its anomalous dimen-
sion was computed in Sec. V F, where we found the result in
Eq. �5.13�. An important feature of this result is that the U�1�
gauge fluctuations reduce the value of �N from that obtained
in the theory without the U�1� gauge field. The latter de-
scribes the O�4� transition between the spiral antiferromagnet
and the Z2 spin liquid. Thus model B spinons do fulfill the
requirements for the experimental interpretation stated in
Ref. 32.

On the other hand, in spinon model A, the order parameter
z†Taz represents the nematic order parameter, while the other
gauge-invariant spinon-monopole composite zt�y�azMb rep-
resents the spiral order parameter. In the case with large Nv,
the scaling dimension of Mb is expected to scale linearly
with Nv. Hence to systematically calculate the scaling dimen-
sion of zt�y�azMb, we need an analytical technique beyond
the 1 /N expansion.

In conclusion, we have proposed a unified theory in the
mutual CS formalism to describe all the magnetic phases
observed in a series of organic compounds, and discussed the
phase transitions between these phases. Experimental impli-
cations for organic compounds in the X�Pd�dmit�2�2 series
and the �-�ET�2Z series were also discussed.
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